1,156 research outputs found

    Segmentation of surface cracks based on a fully convolutional neural network and gated scale pooling

    Get PDF

    Validity of the lifetime drinking history: A comparison of retrospective and prospective quantity-frequency measures

    Get PDF
    OBJECTIVE: The Lifetime Drinking History (LDH) has been used to examine alcohol use throughout the life span. Given its retrospective nature, it is important to examine the validity of the assessment. METHOD: Building on previous work establishing the reliability and validity of the LDH, the current study examined a sample of 1,295 men in the Vietnam Era Twin Registry. The men were assessed retrospectively with the LDH in 2000, at an average age of 51. The drinking patterns of these same men were also assessed prospectively in four prior studies, taking place in 1987, 1990, 1992, and 1995. RESULTS: Validity of the LDH was examined by comparing the correspondence between the prospective and retrospective quantity-frequency measures and reported age at first regular drinking. Correlations between the retrospective and prospective assessments were high for age at first regular drinking (.42-.58) and quantity-frequency measures (.47-.69), although some mean differences in the amount of consumption existed. CONCLUSIONS: Results support the use of the LDH in reporting phases of drinking across the life span

    Measuring hidden phenotype:Quantifying the shape of barley seeds using the Euler characteristic transform

    Get PDF
    Shape plays a fundamental role in biology. Traditional phenotypic analysis methods measure some features but fail to measure the information embedded in shape comprehensively. To extract, compare and analyse this information embedded in a robust and concise way, we turn to topological data analysis (TDA), specifically the Euler characteristic transform. TDA measures shape comprehensively using mathematical representations based on algebraic topology features. To study its use, we compute both traditional and topological shape descriptors to quantify the morphology of 3121 barley seeds scanned with X-ray computed tomography (CT) technology at 127 μm resolution. The Euler characteristic transform measures shape by analysing topological features of an object at thresholds across a number of directional axes. A Kruskal-Wallis analysis of the information encoded by the topological signature reveals that the Euler characteristic transform picks up successfully the shape of the crease and bottom of the seeds. Moreover, while traditional shape descriptors can cluster the seeds based on their accession, topological shape descriptors can cluster them further based on their panicle. We then successfully train a support vector machine to classify 28 different accessions of barley based exclusively on the shape of their grains. We observe that combining both traditional and topological descriptors classifies barley seeds better than using just traditional descriptors alone. This improvement suggests that TDA is thus a powerful complement to traditional morphometrics to comprehensively describe a multitude of 'hidden' shape nuances which are otherwise not detected.</p

    Four-Wave Mixing in Landau-Quantized Graphene

    Get PDF
    International audienceFor Landau-quantized graphene, featuring an energy spectrum consisting of a series of nonequidis-tant Landau levels, theory predicts a giant resonantly-enhanced optical nonlinearity. We verify the nonlinearity in a degenerate time-integrated four-wave mixing (FWM) experiment in the mid-infrared spectral range, involving the Landau levels LL −1 , LL 0 and LL 1. A rapid dephasing of the optically induced microscopic polarization on a timescale shorter than the pulse duration (∼4 ps) is observed, while a complementary pump-probe experiment under the same experimental conditions reveals a much longer lifetime of the induced population. The FWM signal shows the expected field dependence with respect to lowest order perturbation theory for low fields. Saturation sets in for fields above ∼ 6 kV/cm. Furthermore, the resonant behavior and the order of magnitude of the third-order susceptibility are in agreement with theoretical calculations

    Pore Microstructure Impacts on Lithium Ion Transport and Rate Capability of Thick Sintered Electrodes

    Get PDF
    Increasing electrode thickness is one route to improve the energy density of lithium-ion battery cells. However, restricted Li+ transport in the electrolyte phase through the porous microstructure of thick electrodes limits the ability to achieve high current densities and rates of charge/discharge with these high energy cells. In this work, processing routes to mitigate transport restrictions were pursued. The electrodes used were comprised of only active material sintered together into a porous pellet. For one of the electrodes, comparisons were done between using ice-templating to provide directional porosity and using sacrificial particles during processing to match the geometric density without pore alignment. The ice-templated electrodes retained much greater discharge capacity at higher rates of cycling, which was attributed to improved transport properties provided by the processing. The electrodes were further characterized using an electrochemical model of the cells evaluated and neutron imaging of a cell containing the ice-templated pellet. The results indicate that significant improvements can be made to electrochemical cell properties via templating the electrode microstructure for situations where the rate limiting step includes ion transport limitations in the cell

    Global impacts of tropospheric halogens (Cl, Br, I) on oxidants and composition in GEOS-Chem [Discussion paper]

    Get PDF
    We present a simulation of the global present-day composition of the troposphere which includes the chemistry of halogens (Cl, Br, I). Building on previous work within the GEOS-Chem model we include emissions of inorganic iodine from the oceans, anthropogenic and biogenic sources of halogenated gases, gas phase chemistry, and a parameterised approach to heterogeneous halogen chemistry. Consistent with Schmidt et al. (2016) we do not include sea-salt debromination. Observations of halogen radicals (BrO, IO) are sparse but the model has some skill in reproducing these. Modelled IO shows both high and low biases when compared to different datasets, but BrO concentrations appear to be modelled low. Comparisons to the very sparse observations dataset of reactive Cl species suggest the model represents a lower limit of the impacts of these species, likely due to underestimates in emissions and therefore burdens. Inclusion of Cl, Br, and I results in a general improvement in simulation of ozone (O3) concentrations, except in polar regions where the model now underestimates O3 concentrations. Halogen chemistry reduces the global tropospheric O3 burden by 18.6 %, with the O3 lifetime reducing from 26 to 22 days. Global mean OH concentrations of 1.28  ×  106 molecules cm−3 are 8.2 % lower than in a simulation without halogens, leading to an increase in the CH4 lifetime (10.8 %) due to OH oxidation from 7.47 to 8.28 years. Oxidation of CH4 by Cl is small (∼  2 %) but Cl oxidation of other VOCs (ethane, acetone, and propane) can be significant (∼  15–27 %). Oxidation of VOCs by Br is smaller, representing 3.9 % of the loss of acetaldehyde and 0.9 % of the loss of formaldehyde
    corecore